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We consider a S�1 spin model �or a generalized Blume–Capel model� weakly coupled to a d-dimensional
phonon bath and investigate transition rates between different spin configurations. This study is motivated by
understanding magnetization relaxation as a function of temperature in diverse magnetic systems such as arrays
of magnetic nanoparticles and magnetic molecules. We assume that the magnetization of the spin system
relaxes through consecutive emission or absorption of a single phonon. From a weak, linear spin-phonon
coupling Hamiltonian, we derive transition rates that would be used to examine dynamic properties of the
system in kinetic Monte Carlo simulations. Although the derived phonon-assisted transition rates satisfy de-
tailed balance, in the case of two- and three-dimensional phonon baths, transitions between degenerate states
are not allowed. �This is a major difference of the phonon-assisted transition rates from the Metropolis and
Glauber transition rates.� Thus, if there are no alternative paths along which the spin system can relax, the
relaxation time diverges. Otherwise, the system finds other paths, which leads to an increase in the relaxation
time and energy barrier. However, when higher-order phonon processes are included in the transition rates, it
is found that the system can reach the states which were inaccessible due to the forbidden transitions. As a
result, the system recovers some of the dynamic properties obtained using the Glauber transition rate.
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I. INTRODUCTION

In many physical and chemical nanoscale systems ranging
from semiconductor quantum dots to arrays of magnetic
nanoparticles or nanoscale magnetic molecules, dynamic
properties play a crucial role in understanding the underlying
physics and in designing systems of interest for practical
applications. For example, the time evolution of quantum
systems into decoherence needs to be fully understood in
various local environments in order to build scalable quan-
tum computers. It is also important to investigate the spin-
lattice relaxation time T1 and the magnetization relaxation
time for recently synthesized nanoscale magnetic systems to
use them as information storage devices.

To study the dynamic properties of the systems discussed
above, it is common to consider interactions of the systems
with their environment. The environment is typically de-
scribed as a heat bath, which has a much shorter relaxation
time than the systems. Depending on the physical quantities
to be calculated, one has to choose an appropriate bath. To
understand decoherence mechanisms in quantum dots at low
temperatures, one often considers an interaction between
electron spins and a spin bath consisting of a large number of
S=1 /2 spins that mimic nuclear spins.1,2 To estimate the
spin-lattice relaxation time in quantum dots, one should take
into account electronic spins coupled to a phonon bath.3 In
nanoscale magnetic systems such as arrays of magnetic
nanoparticles,4,5 single-molecule magnets,6–8 and single-
chain magnets,9–11 the effect of nuclear spins is minimal, so a
phonon bath becomes more relevant than a spin bath. For a
single-molecule magnet embedded in a three-dimensional
lattice, transition rates between different spin configurations
have been derived from coupling to the lattice via magneto-
elastic coupling.6–8,12 The magnetization relaxation time was
estimated using these transition rates and quantum tunneling
rates in good agreement with experimental data.7 For a

nearest-neighbor interacting ferromagnetic Ising system,
transition rates were derived from a weak, linear coupling of
the system to a one-, two-, or three-dimensional phonon
bath.13–15 Using these phonon-assisted transition rates, ki-
netic Monte Carlo simulations were performed to measure
the lifetime of the metastable state or magnetization relax-
ation time at low temperatures. The Monte Carlo simulations
revealed that the dynamic properties obtained using the
phonon-assisted transition rates greatly differ from those us-
ing other transition rates, such as Glauber16 or Metropolis.17

It is known that the Glauber transition rate can be derived
from a coupling of a spin system to a fermionic bath.18 Re-
cently, it was shown that the soft Glauber transition rate19

requires different interpretation in the form of the lifetime of
the metastable state at low temperatures, although the energy
barrier to reach equilibrium is the same as that for the stan-
dard hard Glauber transition rate.20 Therefore, selection of a
proper bath and relevant transition rates is critical in under-
standing dynamic properties. The transition rates derived by
Park and co-workers13–15 �two- and three-dimensional baths�
and other groups7,8,21 �three-dimensional bath� using cou-
pling to a phonon bath share a common feature that the rates
become zero for degenerate states. Very recently, the derived
phonon-assisted transition rates were used to examine the
nanostructure of field-driven solid-on-solid interfaces.22 It
was found that the phonon-assisted rates provide significant
differences from other types of transition rates, such as the
Glauber dynamics.

In this study, targeting arrays of weakly interacting mag-
netic nanoparticles, single-molecule magnets, and single-
chain magnets, we generalize the formalism used for an Ising
system in Refs. 13–15 to a S�1 model on a lattice. Each
spin in the model interacts via its nearest neighbors and has
easy-axis single-ion anisotropy. We assume that all spins in
the model are weakly coupled to a phonon bath in d=1, 2, or
3 dimensions. Considering that spin relaxation occurs
through first-order one-phonon emission or absorption pro-
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cesses, we derive transition rates for one-, two-, and three-
dimensional phonon baths. In the cases of d=2 and 3, some
transitions or relaxation paths are inaccessible because tran-
sition rates between degenerate states vanish. This results in
increasing magnetization relaxation time and energy barrier
to be overcome. However, when higher-order phonon pro-
cesses are included, other relaxation paths are opened up and
the relaxation time is reduced compared to the first-order
phonon processes. In the Metropolis and Glauber dynamics,
transitions between degenerate states are allowed with tran-
sition probabilities of 1 and 0.5, respectively. The formalism
for the phonon-assisted transition rates is presented in Sec.
II. The consequences of using the derived transition rates are
discussed in the context of kinetic Monte Carlo simulations
in Sec. III. Higher-order processes and their effects on dy-
namic properties are presented in IV. The conclusion follows
in V.

II. FORMALISM FOR PHONON-ASSISTED
TRANSITION RATES

Although the current formalism can be applied to more
general cases, we start with the following Hamiltonian for Ns
spins �S�1� on a lattice.

Hsp = − J�
�i,j�

Si
zSj

z − D�
i=1

Ns

�Si
z�2 − H�

i=1

Ns

Si
z, �1�

where Si
z is the z component of spin operator S� at site i, J�

�0� is an exchange coupling constant between nearest-
neighboring spins, and the first summation runs over all near-
est neighbor pairs. Unless specified, we consider nearest
neighboring exchange interactions only. A positive value of J
implies ferromagnetically coupled spins. D��0� is a single-
ion magnetic anisotropy parameter determined by the spin-
orbit coupling. A positive value of D indicates that the mag-
netic easy axis of an individual spin is along the �z axis.
Notice that our convention on D differs from the
literature.23,24 H is an external magnetic field applied to the
spin system. The spin Hamiltonian �Eq. �1�� is called a S
�1 spin model. The eigenstates �m� of the spin Hamiltonian
are

�m� = �m1� � �m2� � ¯ � �mNs
� , �2�

where �mi� is the eigenstate of Si
z and mi=−S ,−S+1, . . . ,S

−1,S. For S=1 and D�0, the spin Hamiltonian Eq. �1� is
known as the Blume–Capel model,23,24 which was intro-
duced to describe features of the phase diagram of He3-He4

mixtures as well as to understand a phase transition in UO2.
The S�1 spin model can be applied to the following mag-
netic systems: arrays of weakly interacting magnetic
nanoparticles,4,5 nanoscale single-molecule magnets such as
Mn12 and Fe8,6–8 a Mn�III�2Ni�II� single-chain magnet,10,11

and a Co ferrimagnetic compound.9

To understand spin relaxation in the S�1 spin model, we
assume that the spin system is weakly linearly coupled to a
surrounding phonon bath in d dimensions. Since the phonon
bath has much shorter relaxation time than the spin system, it

is assumed that each spin is independently coupled to the
bath. Then, spin relaxation occurs through consecutive emis-
sion or absorption of a single phonon with energy that equals
the cost of rotating a single spin from mi to mi�1 in a single
transition, while keeping the rest of the spins fixed. Hence-
forth, we call these rotations first-order one-phonon pro-
cesses.

A phonon bath is described as a collection of simple har-
monic oscillators and is assumed to follow the symmetry of
the underlying lattice. The phonon Hamiltonian is written as

Hph = �
q�

��q��cq�
†cq� + 1

2�, �q� = cq , �3�

where q� is the phonon wave vector, �q� is the angular fre-
quency of a harmonic oscillator, cq�

† and cq� are creation and
annihilation operators of a phonon with wave vector q� , and c
is the sound velocity in the lattice. The following spin-
phonon coupling Hamiltonian Hsp-ph has the simplest form
that takes into account all possible first-order one-phonon
processes.

Hsp-ph = ��
j=1

N

�
q�
	 �

2NM�q�
q�Sj

+cq�
† + Sj

+cq� + Sj
−cq�

† + Sj
−cq�� ,

�4�

where � is a coupling constant, N is the number of unit cells
associated with the phonon bath, M is the mass of the par-
ticle in the unit cell, and Sj

� are the raising and lowering spin
operators for site j. Here, the polarization of the phonons is
not considered for simplicity. The magnetoelastic coupling
theory25 suggests that the spin-phonon coupling must be pro-
portional to a linear strain tensor, �	�	=�	�u	, where u	 is
the 	 component of the displacement vector u� and 	� ,	
� 
x ,y ,z�. The displacement vector can be expressed in
terms of cq�

† and cq�, and a Fourier transform is carried out on
�	�	. This explains the dependence of the prefactor of Hsp-ph
on the wave vector q� . Equation �4� contains the minimum
number of terms required to rotate the spin vectors via one-
phonon emission or absorption processes. Notice that the
spin system includes a nearest-neighbor exchange interac-
tion, in contrast to works reported by other groups.7,8 Due to
the exchange interaction, a transition from ml to ml−1 does
not uniquely determine the sign of the energy difference Ek
−Em between the two states. For example, when ml=1, Ek
−Em is positive for Fig. 1�a�, while Ek−Em is negative for
Fig. 1�b�. The same rule is applied to transition from ml to
ml+1.

Using Fermi golden rule, within perturbation theory, we
calculate the transition rate from state �m�= �m1� � �m2�
� ¯ � �ml� � ¯ � �mN� to state �k�= �m1� � �m2� � ¯ � �ml��
� ¯ � �mN�, where ml�=ml�1. States �m� and �k� differ by
the rotation of a single spin �ml→ml�1� at site l. We first
consider the transition rate Wkm from �m� to �k� for emission
of one phonon with energy ��q�, as illustrated in Fig. 1�b�.

Wkm =
2


�
�
nq�

�
q�

��nq� + 1,k�Hsp-ph�nq�,m��2�ph����q�

− �Em − Ek�� , �5�
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=
2


�
�
nq�

�
q�

�2�

2NM�q�
q2�nq� + 1��ph��k��Sl

+ + Sl
−��m��2����q�

− �Em − Ek�� , �6�

where �ph is the phonon density of states, nq� is the eigenvalue
of the phonon number operator, and cq�

†�nq��=	nq� +1�nq� +1� is
used. Here, Ek and Em are the energies of states �k� and �m�
calculated from the spin Hamiltonian �Eq. �1�� and the en-
ergy difference E is given by

E�ml → ml � 1� � Ek − Em

= � J �
k�nn�l�

mk
�l� � D�2ml � 1� � H , �7�

where the sum runs over nearest neighbors of site l. Using
the Bose–Einstein distribution function, one knows that

�
nq�

�nq� + 1��ph =
1

1 − e−���q�
, �8�

where kB is the Boltzmann constant, T is the temperature,
and �=1 / �kBT�. Assuming that the bath relaxes much faster
than the spin system, we integrate over all degrees of free-
dom of the bath and convert �q� into ��Nad� / �2
�d�ddq,
where a is the lattice spacing. Then, the transition rate from
state �m� to �k� becomes

Wkm =
�2Ñ

���d+1cd+2

�Em − Ek�d

1 − e−��Em−Ek� , Em − Ek � 0, �9�

Ñ = �S + ml��S − ml + 1��kl,ml−1 + �S − ml��S + ml + 1��kl,ml+1,

�10�

� = 2
�d = 3�, 2�d = 1,2� , �11�

where � is a mass density associated with the bath and kl is
the quantum number of the lth spin for state �k�. The transi-

tion rate for absorption analogously becomes

Wkm =
�2Ñ

���d+1cd+2

�Ek − Em�d

e��Ek−Em� − 1
, Ek − Em � 0. �12�

Henceforth, we refer to the derived transition rates �Eqs. �9�
and �12�� as phonon-assisted transition rates.

III. CONSEQUENCES OF PHONON-ASSISTED
TRANSITION RATES

The derived phonon-assisted transition rates are general-
ized forms of those for the Ising model discussed in Refs.
13–15. According to Eqs. �9� and �12�, the transition rates are
highest for ml=0 and lowest for ml= �S for large S. A tran-
sition rate8 similar to the derived rates was obtained for an
isolated spin cluster embedded in a lattice instead of inter-
acting spin clusters. In this formalism, the single-ion aniso-
tropy parameter D corresponds to the coupling constant � in
Eq. �4�. Assuming that ��D, we estimate the magnitude of

the prefactor 	��2Ñ / ����d+1cd+2� of the d=3 phonon-
assisted transition rates �Eqs. �9� and �12��, for example, for
the nanoscale single-molecule magnet Mn12. Using measured
parameter values such as S=10, ml=10, J=0.01 K, �=1.83
�103 kg /m2 �Ref. 26�, and c=1.45�103 m /s, �Ref. 7�, we
find the prefactor to be 0.000 41 s−1. Here, we use J
=0.01 K due to the large intermolecular separation in this
system, although it was not directly measured. To associate
the derived transition rates with magnetization relaxation
times for various nanoscale systems, one needs to solve a
master equation including the derived transition rates or per-
form kinetic Monte Carlo simulations with the rates. Hereaf-
ter, we focus on the latter approach.

In Fig. 2, the phonon-assisted transition rates for d=1, 2,
and 3 dimensional phonon baths are shown as functions
of E /T at temperature T=1.0J /kB and compared to the

(b)

(a)
Ek

Em

mE

Ek |1,0,0,1,1>|k>=

|1,0,1,1,1>|k>=

|1,1,1,1,1>|m>=

|1,0,1,1,1>|m>=

FIG. 1. Schematic diagram of �a� one-phonon absorption pro-
cess for rotating the second spin from m2 to m2−1 and �b� one-
phonon emission process for rotating the third spin from m3 to m3

−1 for a five-spin S=1 system. The wavy lines denote the phonons
emitted or absorbed. �a� The energy difference �Ek−Em� equals 2J
+D+H that is positive and �b� �Ek−Em� equals J+D+H that is
negative when −�2J+D��H�−�J+D�.
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FIG. 2. �Color online� Transition rates W vs E /T for the
Glauber and phonon-assisted transition rates in the case of d=1, 2,
and 3 dimensional phonon baths, computed at temperature T
=1.0J /kB. The prefactor of the phonon-assisted transition rates was
not included.
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Glauber transition rate, 1 / �e��Ek−Em�+1�. The main difference
between the phonon-assisted and Glauber transition rates
originates from the nature of the bath coupled to the spin
system. When degenerate states are involved in transitions,
this difference becomes prominent. In the d=2 and 3
phonon-assisted transition rates, transitions between degen-
erate states are forbidden because Wkm=0 when E=0. In
the case of d=1, the rate does not vanish for E=0, but
rather decreases monotonously with E /T like the Glauber
transition rate. Ramifications of the forbidden transitions on
dynamic and equilibrium properties are discussed in Monte
Carlo simulations. For simplicity, we consider a ferromag-
netic S=1 model �the two-dimensional Blume–Capel model
with D�0 in the spin Hamiltonian, Eq. �1�� on a L�L
square lattice with the d=2 phonon-assisted transition rates
unless specified otherwise. To relate the phonon-assisted
transition rates with transition probabilities in Monte Carlo
simulations, the prefactor 	 of the transition rates must be
computed with the proper parameter values. As an example,
in the following Monte Carlo simulations, we use the pref-
actor 	=0.01 and the transition probabilities identical to the
transition rates.

A. Dynamic properties

We investigate the effects of the forbidden transitions on
the lifetime of the metastable state for the S=1 Blume–Capel
model below the critical temperature. A quantitative study of
the nucleation and metastability for the model as a function
of D and H using the phonon-assisted transition rates is in
progress and will be discussed elsewhere. We first review
what is known about the Blume–Capel model in the litera-
ture. The phase diagram of the model is shown in Fig. 3.27

The nucleation and metastability for the model were studied
using the Metropolis transition rate for −4J�D�−3J and
−J�H�−�4J+D� with J�0 in Ref. 27. This is a different
regime from what we are interested in. The critical tempera-
ture Tc of the model increases as D /J increases at H=0. The
value of Tc at D=0 was calculated using different methods.
A Bethe-lattice approximation gave rise to Tc=2.065J /kB
�Ref. 28� and an effective field theory suggested Tc
=1.952J /kB.29 An expanded Bethe–Peierls approximation
produced Tc=1.915J /kB,30 and Monte Carlo simulations sug-
gested that the critical temperature at H=0 is 1.6950J /kB at

D=0 and 2.1855J /kB at D=5J.31 In Ref. 31, nonequilibrium
short-time dynamics at Tc was studied using the heat-bath
�Glauber� transition rate.

We are interested in dynamics in the following regime.
Suppose that all spins are initially aligned along the +z axis.
When an external magnetic field is applied along the −z axis,
the initial state becomes metastable. When −�4J+D��H
�0, at low temperatures, the spin system relaxes toward the
stable state �all spins along the −z axis� via creating a single
critical droplet consisting of connected mi=−1 spins. �In the
regime studied in Ref. 27, multiple critical droplets are
formed.� To give a specific example, we consider H=
−3.25J, D=0.75J, and T�0.02J /kB. Figure 4 illustrates a
few possible relaxation paths from the metastable state. The
initial state �A� can first relax to state �B�, which represents a
single ml=0 spin in the sea of ml= +1 spins. Then, state �B�
can relax to one of the states �C�, �D�, or �G�, where state �C�
denotes a single ml=−1 spin in the sea of ml= +1 spins and
state �D� �state �G�� two nearest-neighbor ml=0 spins �two
ml=0 spins that are not nearest neighbors� in the sea of ml
= +1 spins. Transitions between states �B� and �D� are for-
bidden because E= � �4J−D+H�=0. Thus, the system can
relax from state �B� to either state �C� or �G�. The most likely
path among the alternative ones is �B�→ �C�→ �E�, as indi-
cated by the thick arrows in Fig. 4. Thus, for the d=2
phonon-assisted transition rate, the critical droplet is state
�C�. As a result, the energy barrier to be overcome in order to
reach the stable state is 2.0J, while it is 1.5J for the Glauber
transition rate. Accordingly, the relaxation time becomes
longer than that for the Glauber transition rate. In an Ising
system coupled to a phonon bath, a similar behavior has been
found at H=−2J.13–15 If there are no alternative paths, the

−4
00

+1

−1

H/J

D/J

FIG. 3. �Color online� Phase diagram of the Blume–Capel
model with D�0 in the spin Hamiltonian �1� at zero temperature
�Ref. 27�. The equilibrium spin configurations are shown in the
three different regions.

all spins +1 0 00
1.5

−10−1

0.5

−0.5

−10
(A)

(B) (C)

(D) (E)

0 0(G)

1.5

FIG. 4. Schematic diagram of relaxation of magnetization for a
ferromagnetic S=1 Blume–Capel model at H=−3.25J and D
=0.75J via first-order one-phonon processes, ml→ml�1. State �A�
denotes all spins aligned along the +z axis and state �B� a single
ml=0 spin in the sea of mi= +1 spins. The boxes represent rotated
spins from the +z axis in the initial state. State �C� represents two
nearest-neighbor ml=0 spins in the sea of mi= +1 spins, while state
�G� represents two ml=0 spins that are not nearest neighbors. The
numbers next to the arrows indicate the energy difference E de-
fined by Eq. �7�. With the d=2 phonon-assisted transition rates, the
spin system relaxes through �A�→ �B�→ �C�→ �E� rather than
�A�→ �B�→ �D�→ �E�. The thick arrows represent the most prob-
able path for relaxation with the phonon-assisted rates. The thin
arrows denote the most probable path with the Glauber transition
rate.
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relaxation time diverges. For a two-electron state in a quan-
tum dot, the measured spin-lattice relaxation time was ob-
served to diverge at a particular magnetic field where the
triplet and the singlet states became degenerate.3

B. Equilibrium properties

The d=1, 2, and 3 phonon-assisted transition rates satisfy
detailed balance. Thus, equilibrium properties obtained using
the derived transition rates must agree with those obtained
using different transition rates in Monte Carlo simulations.
However, there is a caveat in this statement because of for-
bidden transitions between degenerate states for the d=2 and
3 phonon-assisted rates. In some cases, the forbidden transi-
tions would prevent the spin system from relaxing to the
equilibrium state if we start with a particular initial state. As
an example, we consider D=4J and H=0. As illustrated in
Fig. 5, transitions between ml= +1 �ml=−1� and ml=0 with
the sum of the nearest neighbors fixed as −4 �+4� are not
allowed because E=−4J�H+D=0. So, if we started with
a checkerboard initial state as shown in Fig. 6 in Monte
Carlo simulations, the system would stay indefinitely at the
initial state because Wkm=0 for any possible single-spin ro-
tations. However, we have confirmed that the system reaches
equilibrium if we start with a random initial state or a state
slightly modified from the checkerboard pattern. Even one
defect site in the perfect checkerboard state is sufficient. For

example, starting with one defect site in the checkerboard
pattern �such as changing ml= +1 to −1 in Fig. 6�, we obtain
the average relaxation time to the equilibrium state to be
438 446 �2 985 069� Monte Carlo time using the Glauber �
d=2 phonon-assisted� transition rate with 2000 escapes at
T=0.9J /kB and for L=20. A similar feature was reported in
the time evolution of field-driven solid-on-solid interfaces
using the d=2 phonon-assisted transition rate.22

Monte Carlo simulations are performed for D=4J and
H=0 with periodic boundary conditions and a random initial
state. Spins at sites are updated in a regular typewriter fash-
ion. L=20, 30, 40, 50, and 60 are considered at several dif-
ferent temperatures. The average absolute magnetization per
site ��m�� and cumulant UL are calculated.

��m�� =
1

M̃
�
i=1

M̃
1

L2��
j=1

L2

Sj
�i��, UL = 1 −

�m4�
3�m2�2 , �13�

where m is the magnetization per site and M̃ is the total
number of Monte Carlo steps. It is found that ��m�� �not
shown� and UL �Fig. 7� as functions of temperature agree
with those obtained using the Glauber transition rate for the
different system sizes. For the Glauber transition rate, the
values of UL for the different system sizes intersect with one
another at UL

�=0.611�0.008 and Tc=2.052�0.005J /kB,
while for the phonon-assisted transition rate, we have UL

�

=0.611�0.009 and Tc=2.052�0.006J /kB. So, both transi-
tion rates give rise to the same critical temperature. This
critical temperature is slightly lower than that reported in
Ref. 31, 2.13J /kB. At Tc=2.052J /kB, we compute a dynamic
scaling exponent z using the nonequilibrium short-time dy-
namics of an initial configuration with total magnetization of
zero at early times.32 We use 33 588 �48 977� independent
initial configurations of zero total magnetization for L1=20
�L2=40�. We calculate a time-dependent cumulant UL�t ,L� in
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FIG. 5. Transitions forbidden by first-order one-phonon pro-
cesses for a S=1 spin system on a square L�L lattice with D=4J
and H=0 in which Wkm=0. �a� Initial state of −1 with nearest
neighbors of +1. �b� Initial state of +1 with nearest neighbors of −1.
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FIG. 6. A checkerboard state for a S=1 spin system on a 6�6
square lattice.
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FIG. 7. �Color online� Cumulant UL �Eq. �13�� vs temperature
calculated from Monte Carlo simulations using �top� the Glauber
and �bottom� the d=2 phonon-assisted transition rates for S=1
spins on a L�L square lattice at D=4J and H=0. Random initial
states and periodic boundary conditions were used. For the fixed
point of the cumulant and critical temperature, see text.
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the time interval of t=50–1000 �800–2000� sweeps for the
Glauber �d=2 phonon-assisted� transition rate. From
UL�t ,L2�=UL�b−zt ,b−1L2�, where b=L2 /L1, we obtain z
=2.045�0.005 for the Glauber dynamic and z
=2.145�0.005 for the d=2 phonon-assisted dynamic. Both
values are close to z=2.156 for the two-dimensional Ising
model.33

IV. HIGHER-ORDER PROCESSES

We have, so far, discussed spin relaxation caused by first-
order one-phonon processes, ml→ml�1. However, higher-
order processes such as multiphonon processes and second-
order one-phonon processes �ml→ml�2� can also
contribute to the spin relaxation. Their contributions become
significant especially when encountering transitions forbid-
den by the first-order one-phonon processes. In this case, the
spin system would find less costly paths via the higher-order
processes than paths directed by the first-order processes.
Thus, the relaxation time becomes shortened and the system
may recover the same relaxation time or energy barrier as the
Glauber transition rate. The system starting with the check-
erboard state �Fig. 6� can be also relaxed to equilibrium with
d=2 and 3 phonon-assisted dynamics.

Recently, multiphonon processes such as Raman pro-
cesses and two-phonon processes were considered in a spin-
phonon relaxation rate for rigid atomic clusters, and it was
shown that there are no closed analytical forms for the rate.34

In the current study, we focus on second-order one-phonon
processes as higher-order processes. These second-order pro-
cesses were included as a part of the relaxation mechanism
for the single-molecule magnet Mn12.

7 The simplest form of
the spin-phonon coupling Hamiltonian for these processes is
given by

Hsp-ph
�2nd� = ���

j=1

N

�
q�
	 �

2NM�q�
q��Sj

+�2cq�
† + �Sj

−�2cq�
† + �Sj

+�2cq�

+ �Sj
−�2cq�� , �14�

where �� is a coupling constant and ����� ���. Following the
method used in Sec. II, we obtain the transition rate Wkm

�2nd�

from state �m� to �k�, where these two states differ by a single
spin rotation at site l, ml�=ml�2.

Wkm
�2nd� =

����2N�

���d+1cd+2� �Ek − Em�d

e��Ek−Em� − 1
� , �15�

N� = �S + ml��S − ml + 1��S + ml − 1��S − ml + 2��kl,ml−2 + �S

− ml��S + ml + 1��S − ml − 1��S + ml + 2��kl,ml+2, �16�

where � is defined in Eq. �11�. The energy difference Ek
−Em=E is

E�ml → ml � 2� = � 2J �
k�nn�l�

mk
�l� � 4D�ml � 1� � 2H ,

�17�

where the sum runs over nearest neighbors of site l. This
formula is applied to both emission and absorption pro-
cesses.

When the second-order transition rate Wkm
�2nd� is included

in the calculation of the lifetime of the metastable state, re-
laxation scenarios are greatly modified, as illustrated in Fig.
8. With the same parameter values used in Sec. III A �D
=0.75J and H=−3.25J�, the system can now relax through
transitions as indicated by the thick dashed arrows ��A�
→ �D�→ �F�� or by the thick solid arrows ��A�→ �B�
→ �E�� in Fig. 8. None of these transitions involve degener-
ate states. The critical droplet for the first relaxation route is
state �D�, while that for the second route is state �B�. In both
relaxation paths, the energy barrier is 1.5J, which is the same
as that for the Glauber transition rate. In the case of equilib-
rium Monte Carlo simulations, the second-order processes
allow the system to relax via alternative second-order transi-
tions with lower energy cost but E�0. So the checker-
board initial state �Fig. 6� can reach equilibrium for D=4J
and H=0. It is confirmed that for L=20 the equilibrium
properties computed with addition of Wkm

�2nd� to Wkm agree
with those obtained using the Glauber transition rate.

As other higher-order terms, we consider next-nearest-
neighbor exchange interactions JNNN in Eq. �1� in the context
of the first-order one-phonon processes and study how a non-
zero value of JNNN affects the forbidden transitions discussed
earlier. At D=0.75J and H=−3.25J, states �B� and �D� in
Fig. 4 are not degenerate any longer with the next-nearest-
neighbor interactions. However, for a given value of D, there
exists a value of field H=−4�J+JNNN�+D where states �B�
and �D� become degenerate. Similarly, at D=4J and H=0,
the checkerboard pattern does equilibrate with the next-
nearest-neighbor interactions. However, for a given value of
D, there exists a value of H= � �4J−4JNNN−D� where the
checkerboard configuration does not equilibrate with the d
=2 and 3 first-order phonon-assisted transition rates. There-
fore, the next-nearest-neighboring interactions alone cannot
lift the degeneracy in the states and remove the forbidden
transitions. The second-order transition rate Wkm

�2nd� is needed
for relaxation paths with low energy barriers and for relax-
ation of the checkerboard configuration.

all spins +1 0 00

−10−1

−1−1

1.5

1.5 0 −0.5

0.5

−2.5

(A)

(B) (C)

(D) (E)

(F)

FIG. 8. Schematic diagram of relaxation of magnetization for a
S=1 spin system at H=−3.25J and D=0.75J when both first-order
�ml→ml�1� and second-order one-phonon processes �ml

→ml�2� are considered. The thick solid and dashed arrows repre-
sent two highly probable paths for relaxation. Compared to Fig. 4,
the spin system can relax from state �A� to state �E� through �B� or
to state �F� through �D�. The numbers next to the arrows indicate
the energy difference E defined by Eqs. �7� and �17�.
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V. CONCLUSION

We have considered the S�1 spin model �generalized
Blume–Capel model� weakly coupled to a one-, two-, or
three-dimensional phonon bath and derived corresponding
transition rates from the spin-phonon coupling Hamiltonian.
The derived phonon-assisted transition rates for two- and
three-dimensional baths differ from other transition rates in
that the former rates become zero for degenerate states. This
caused some transitions to be forbidden by the first-order
one-phonon assisted transition rates, increasing the magneti-

zation relaxation time. Using a combination of the first-order
one-phonon processes with the second-order processes, how-
ever, the system found more energy-efficient paths to equi-
librium and the relaxation time shortened. These results rep-
resent a major step toward developing physically realistic
kinetic Monte Carlo simulations for magnetic spin systems.
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